.. _program_listing_file_src_games_epec.cpp: Program Listing for File epec.cpp ================================= |exhale_lsh| :ref:`Return to documentation for file ` (``src/games/epec.cpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp /* ############################################# * This file is part of * ZERO * * Copyright (c) 2020 * Released under the Creative Commons * CC BY-NC-SA 4.0 License * * Find out more at * https://github.com/ds4dm/ZERO * #############################################*/ #include "games/epec.h" #include "games/algorithms/EPEC/epec_polybase.h" #include void Game::EPEC::finalize() { if (this->Finalized) std::cerr << "Warning in Game::EPEC::finalize: Model already Finalized\n"; this->NumPlayers = static_cast(this->PlayersLowerLevels.size()); this->preFinalize(); // Vector with the number of variables of the convex hull this->ConvexHullVariables = std::vector(this->NumPlayers, 0); // Reset the statistic of feasible polyhedra for any player this->Stats.AlgorithmData.FeasiblePolyhedra.set(std::vector(this->NumPlayers, 0)); // Assign locations to the variables this->computeLeaderLocations(this->numMCVariables); // Initialize leader objective and PlayersQP this->LeaderObjective = std::vector>(NumPlayers); this->LeaderObjectiveConvexHull = std::vector>(NumPlayers); this->PlayersQP = std::vector>(NumPlayers); this->PlayersLCP = std::vector>(NumPlayers); this->SizesWithoutHull = std::vector(NumPlayers, 0); // For each player for (unsigned int i = 0; i < this->NumPlayers; i++) { // Add a trivial variables to the player's lower level this->addDummyLead(i); // Leader objective and its dummy-enlarged version with convex hull variables this->LeaderObjective.at(i) = std::make_shared(); this->LeaderObjectiveConvexHull.at(i) = std::make_shared(); // Fill the original objectives this->makeObjectivePlayer(i, *this->LeaderObjective.at(i).get()); // Compute sizes this->SizesWithoutHull.at(i) = *this->LocEnds.at(i); } // Finalize this->Finalized = true; this->postFinalize(); } void Game::EPEC::addDummyLead(const unsigned int i) { ZEROAssert(i < this->NumPlayers); const unsigned int nEPECvars = this->NumVariables; const unsigned int nThisCountryvars = *this->LocEnds.at(i); ZEROAssert(nEPECvars >= nThisCountryvars); // Add dummy vars associated with "everything else" this->PlayersLowerLevels.at(i).get()->addDummy(nEPECvars - nThisCountryvars); } void Game::EPEC::computeLeaderLocations(const unsigned int addSpaceForMC) { this->LeaderLocations = std::vector(this->NumPlayers); this->LeaderLocations.at(0) = 0; for (unsigned int i = 1; i < this->NumPlayers; i++) { this->LeaderLocations.at(i) = this->LeaderLocations.at(i - 1) + *this->LocEnds.at(i - 1); } this->NumVariables = this->LeaderLocations.back() + *this->LocEnds.back() + addSpaceForMC; } void Game::EPEC::getXMinusI(const arma::vec &x, const unsigned int &i, arma::vec &xMinusI) const { ZEROAssert(i < this->NumPlayers); const unsigned int nEPECvars = this->NumVariables; const unsigned int nThisCountryvars = *this->LocEnds.at(i); const unsigned int nThisCountryHullVars = this->ConvexHullVariables.at(i); const auto nConvexHullVars = static_cast( std::accumulate(this->ConvexHullVariables.rbegin(), this->ConvexHullVariables.rend(), 0)); xMinusI.zeros(nEPECvars - // All variables in EPEC nThisCountryvars - // Subtracting this country's variables nConvexHullVars + // We don't want any convex hull variables nThisCountryHullVars); // We subtract the hull variables // associated to the ith player // convex hull vars, since we double subtracted for (unsigned int j = 0, count = 0, current = 0; j < this->NumPlayers; ++j) { if (i != j) { current = *this->LocEnds.at(j) - this->ConvexHullVariables.at(j); xMinusI.subvec(count, count + current - 1) = x.subvec(this->LeaderLocations.at(j), this->LeaderLocations.at(j) + current - 1); count += current; } } // We need to keep track of MC_vars also for this country for (unsigned int j = 0; j < this->numMCVariables; j++) xMinusI.at(xMinusI.n_rows - this->numMCVariables + j) = x.at(this->NumVariables - this->numMCVariables + j); } void Game::EPEC::getXofI(const arma::vec &x, const unsigned int &i, arma::vec &xOfI, bool hull) const { ZEROAssert(i < this->NumPlayers); const unsigned int nThisCountryvars = *this->LocEnds.at(i); const unsigned int nThisCountryHullVars = this->ConvexHullVariables.at(i); unsigned int vars, current = 0; if (hull) { vars = nThisCountryvars; current = *this->LocEnds.at(i); } else { vars = nThisCountryvars - nThisCountryHullVars; current = *this->LocEnds.at(i) - this->ConvexHullVariables.at(i); } xOfI.zeros(vars); xOfI.subvec(0, vars - 1) = x.subvec(this->LeaderLocations.at(i), this->LeaderLocations.at(i) + current - 1); } void Game::EPEC::getXWithoutHull(const arma::vec &x, arma::vec &xWithoutHull) const { const unsigned int nEPECvars = this->NumVariables; const auto nConvexHullVars = static_cast( std::accumulate(this->ConvexHullVariables.rbegin(), this->ConvexHullVariables.rend(), 0)); xWithoutHull.zeros(nEPECvars - // All variables in EPEC nConvexHullVars); // We subtract the hull variables // associated to the convex hull // convex hull vars for (unsigned int j = 0, count = 0, current; j < this->NumPlayers; ++j) { current = *this->LocEnds.at(j) - this->ConvexHullVariables.at(j); xWithoutHull.subvec(count, count + current - 1) = x.subvec(this->LeaderLocations.at(j), this->LeaderLocations.at(j) + current - 1); count += current; } for (unsigned int j = 0; j < this->numMCVariables; j++) xWithoutHull.at(xWithoutHull.n_rows - this->numMCVariables + j) = x.at(this->NumVariables - this->numMCVariables + j); } std::unique_ptr Game::EPEC::bestResponseProgram(const unsigned int i, const arma::vec &x, MathOpt::PolyLCP *customLCP) const { ZEROAssert(this->Finalized); ZEROAssert(i < this->NumPlayers); arma::vec solOther; this->getXMinusI(x, i, solOther); auto LCP = (customLCP == nullptr) ? this->PlayersLCP.at(i).get() : customLCP; if (this->LeaderObjective.at(i)->Q.n_nonzero > 0) return LCP->LCPasMIQP(this->LeaderObjective.at(i)->Q, this->LeaderObjective.at(i)->C, this->LeaderObjective.at(i)->c, solOther, true); else return LCP->LCPasMILP( this->LeaderObjective.at(i)->C, this->LeaderObjective.at(i)->c, solOther, true); } double Game::EPEC::bestResponse(arma::vec &sol, unsigned int player, const arma::vec &x, const arma::vec &prevDev, MathOpt::PolyLCP *customLCP) const { ZEROAssert(this->Finalized); ZEROAssert(player < this->NumPlayers); auto model = this->bestResponseProgram(player, x, customLCP); const int status = model->get(GRB_IntAttr_Status); if (status == GRB_UNBOUNDED || status == GRB_OPTIMAL) { //If unbounded or optimal either solution or extreme ray unsigned int Nx = this->PlayersLCP.at(player)->getNumCols(); sol.zeros(Nx); for (unsigned int i = 0; i < Nx; ++i) sol.at(i) = model->getVarByName("x_" + std::to_string(i)).get(GRB_DoubleAttr_X); if (status == GRB_UNBOUNDED) { LOG_S(WARNING) << "Game::EPEC::bestResponse: deviation is " "unbounded."; GRBLinExpr obj = 0; model->setObjective(obj); model->optimize(); if (!prevDev.empty()) { LOG_S(1) << "Generating an improvement basing on the extreme ray."; // Fetch objective function coefficients GRBQuadExpr QuadObj = model->getObjective(); arma::vec objcoeff; for (int i = 0; i < QuadObj.size(); ++i) objcoeff.at(i) = QuadObj.getCoeff(i); // Create objective function objects arma::vec objvalue = prevDev * objcoeff; arma::vec newobjvalue{0}; bool improved{false}; // improve following the unbounded ray while (!improved) { for (unsigned int i = 0; i < Nx; ++i) sol.at(i) = sol.at(i) + model->getVarByName("x_" + std::to_string(i)).get(GRB_DoubleAttr_UnbdRay); newobjvalue = sol * objcoeff; if (newobjvalue.at(0) < objvalue.at(0)) improved = true; } return newobjvalue.at(0); } else { return model->get(GRB_DoubleAttr_ObjVal); } } return model->get(GRB_DoubleAttr_ObjVal); } else { return GRB_INFINITY; } } void Game::EPEC::makePlayerQP(const unsigned int i) { ZEROAssert(this->Finalized); ZEROAssert(i < this->NumPlayers); this->PlayersQP.at(i) = std::make_shared(this->Env); const auto &origLeadObjec = *this->LeaderObjective.at(i).get(); this->LeaderObjectiveConvexHull.at(i) = std::make_shared( MathOpt::QP_Objective{origLeadObjec.Q, origLeadObjec.C, origLeadObjec.c}); this->PlayersLCP.at(i)->makeQP(*this->LeaderObjectiveConvexHull.at(i).get(), *this->PlayersQP.at(i).get()); } void Game::EPEC::makePlayersQPs() { for (unsigned int i = 0; i < this->NumPlayers; ++i) { this->Game::EPEC::makePlayerQP(i); } for (unsigned int i = 0; i < this->NumPlayers; ++i) { // Adjusting "stuff" because we now have new convHull variables unsigned long int originalSizeWithoutHull = this->LeaderObjective.at(i)->Q.n_rows; unsigned long int convHullVarCount = this->LeaderObjectiveConvexHull.at(i)->Q.n_rows - originalSizeWithoutHull; LOG_S(1) << "Game::EPEC::makePlayerQP: Added " << convHullVarCount << " convex hull variables to QP #" << i; // Location details this->ConvexHullVariables.at(i) = convHullVarCount; // All other players' QP if (this->NumPlayers > 1) { for (int j = 0; j < this->NumPlayers; j++) { if (i != j) { this->PlayersQP.at(j)->addDummy( convHullVarCount, 0, this->PlayersQP.at(j)->getNumParams() - this->numMCVariables); // The position to add parameters is // towards the end of all parameters, // giving space only for the // numMCVariables number of market // clearing variables } } } } this->updateLocations(); this->computeLeaderLocations(this->numMCVariables); } void Game::EPEC::makeTheLCP() { ZEROAssert(this->PlayersQP.front() != nullptr); // Preliminary set up to get the LCP ready unsigned long int Nvar = this->PlayersQP.front()->getNumParams() + this->PlayersQP.front()->getNumVars(); arma::sp_mat MC(0, Nvar), dumA(0, Nvar); arma::vec MCRHS, empty; MCRHS.zeros(0); empty.zeros(0); this->makeMCConstraints(MC, MCRHS); LOG_S(1) << "Game::EPEC::makeTheLCP(): Market Clearing " "constraints are ready"; std::vector> MPCasted; for (auto &item : this->PlayersQP) { auto m = std::dynamic_pointer_cast(item); MPCasted.push_back(m); } this->TheNashGame = std::make_unique(this->Env, MPCasted, MC, MCRHS, 0, dumA, empty); LOG_S(1) << "Game::EPEC::makeTheLCP(): NashGame is ready"; this->TheLCP = std::make_unique(this->Env, *TheNashGame); LOG_S(1) << "Game::EPEC::makeTheLCP(): LCP is ready"; LOG_S(2) << *TheNashGame; } void Game::EPEC::setWelfareObjective(bool linear = true, bool quadratic = true) { if (!linear && !quadratic) { this->LCPModel->setObjective(GRBLinExpr{0}, GRB_MAXIMIZE); return; } std::vector> xOfIs; // indexes of variables for each player std::vector> xMinusIs; // indexes of variables for each "other" player (xminusi) GRBLinExpr linearWelfare = 0; GRBQuadExpr quadrWelfare = 0; // Linear part + initialization for (unsigned int p = 0; p < this->getNumPlayers(); ++p) { unsigned int playerVars = this->LeaderObjective.at(p)->c.size(); std::vector xOfI; for (unsigned int i = this->LeaderLocations.at(p), v = 0; i < this->LeaderLocations.at(p) + playerVars; ++i, ++v) { // xOfI.push_back(i); linearWelfare += this->LCPModel->getVarByName("x_" + std::to_string(i)) * this->LeaderObjective.at(p)->c.at(v); } xOfIs.push_back(xOfI); } // Account for market clearing variables for (unsigned int p = 0; p < this->getNumPlayers(); ++p) { // For each player, we build the xMinusI vector std::vector xMinusI; for (unsigned int o = 0; o < this->getNumPlayers(); ++o) { if (p != o) { for (unsigned int i = 0; i < this->LeaderObjective.at(o)->c.size(); ++i) xMinusI.push_back(xOfIs.at(o).at(i)); } } // Get the MC variables for (unsigned int j = 0; j < this->numMCVariables; j++) xMinusI.push_back(this->NumVariables - this->numMCVariables + j); xMinusIs.push_back(xMinusI); } // Now we can build the objective for (unsigned int p = 0; p < this->getNumPlayers(); ++p) { GRBQuadExpr interact = 0; for (arma::sp_mat::const_iterator it = this->LeaderObjective.at(p)->C.begin(); it != this->LeaderObjective.at(p)->C.end(); ++it) { unsigned int xPlayer = xOfIs.at(p).at(it.row()); unsigned int xOther = xMinusIs.at(p).at(it.col()); interact += *it * this->LCPModel->getVarByName("x_" + std::to_string(xPlayer)) * this->LCPModel->getVarByName("x_" + std::to_string(xOther)); } quadrWelfare += interact; } if (quadratic) { if (linear) { // both linear and quadratic LOG_S(INFO) << "Game::EPEC::setWelfareObjective: Setting linear+quadratic objective."; this->LCPModel->setObjective(linearWelfare + quadrWelfare, GRB_MINIMIZE); } else { // just quadratic LOG_S(INFO) << "Game::EPEC::setWelfareObjective: Setting quadratic objective."; this->LCPModel->setObjective(quadrWelfare, GRB_MINIMIZE); } this->LCPModel->set(GRB_IntParam_NonConvex, 2); } else { // Then just linear LOG_S(INFO) << "Game::EPEC::setWelfareObjective: Setting linear objective."; this->LCPModel->setObjective(linearWelfare, GRB_MINIMIZE); } } bool Game::EPEC::computeNashEq(bool pureNE, double localTimeLimit = -1, bool check = false, bool linearWelfare = false, bool quadraticWelfare = false) { // Make the Nash Game between countries this->NashEquilibrium = false; LOG_S(1) << "Game::EPEC::computeNashEq: Making the Master LCP"; this->makeTheLCP(); LOG_S(1) << "Game::EPEC::computeNashEq: Made the Master LCP"; auto solver = this->Stats.AlgorithmData.LCPSolver.get(); if (solver == Data::LCP::Algorithms::PATH) { LOG_S(WARNING) << "Game::EPEC::computeNashEq: Cannot use PATH fallback (EPEC Market Clearings " "cannot be handeled). Using MIP"; solver = Data::LCP::Algorithms::MIP; } /* * In these cases, we can only use a MIP solver to get multiple solutions or PNEs */ unsigned int threads = 1; if (solver == Data::LCP::Algorithms::MIP || solver == Data::LCP::Algorithms::MINLP) { if (this->Stats.AlgorithmData.Threads.get() >= 8) { int wrk = static_cast(std::round(std::floor(this->Stats.AlgorithmData.Threads.get() / 4))); threads = std::max(wrk, 1); LOG_S(INFO) << "Game::EPEC::computeNashEq: Threads set to " << threads << "."; } } bool multipleNE = check; if (check && this->Stats.AlgorithmData.Algorithm.get() == Data::EPEC::Algorithms::OuterApproximation) { LOG_S(WARNING) << "Game::EPEC::computeNashEq: (check flag is " "true) Cannot search fore multiple NE with the CutAndPlay."; multipleNE = false; } if (pureNE) { LOG_S(INFO) << "Game::EPEC::computeNashEq: (PureNashEquilibrium flag is " "true) Searching for a pure NE."; if (this->Stats.AlgorithmData.Algorithm.get() != Data::EPEC::Algorithms::OuterApproximation) this->Algorithm->makeThePureLCP(); else LOG_S(WARNING) << "Game::EPEC::computeNashEq: (PureNashEquilibrium flag is " "true) Cannot search fore pure NE with the CutAndPlay."; } if (this->TheLCP->getNumRows() > 250000) { LOG_S(WARNING) << "Game::EPEC::computeNashEq: Too many complementarities. Aborting"; this->Stats.Status.set(ZEROStatus::Numerical); return false; } this->LCPModel = this->TheLCP->LCPasMIP(false, localTimeLimit, threads, multipleNE ? GRB_MAXINT : 1); this->setWelfareObjective(linearWelfare, quadraticWelfare); try { this->LCPModel->set(GRB_IntParam_OutputFlag, 1); this->LCPModel->set(GRB_IntParam_NumericFocus, 1); this->LCPModel->optimize(); } catch (GRBException &e) { throw ZEROException(e); } try { // Try finding a Nash equilibrium for the approximation this->NashEquilibrium = this->TheLCP->extractSols(this->LCPModel.get(), SolutionZ, SolutionX, true); } catch (GRBException &e) { throw ZEROException(e); } if (this->NashEquilibrium) { // If a Nash equilibrium is found, then update // appropriately if (multipleNE) { int scount = this->LCPModel->get(GRB_IntAttr_SolCount); LOG_S(INFO) << "Game::EPEC::computeNashEq: number of equilibria is " << scount; for (int k = 0, stop = 0; k < scount && stop == 0; ++k) { this->LCPModel->set(GRB_IntParam_SolutionNumber, k); this->NashEquilibrium = this->TheLCP->extractSols(this->LCPModel.get(), this->SolutionZ, this->SolutionX, true); if (this->Algorithm->isSolved()) { LOG_S(INFO) << "Game::EPEC::computeNashEq: an " "Equilibrium has been found"; stop = 1; } } } else { this->NashEquilibrium = true; LOG_S(INFO) << "Game::EPEC::computeNashEq: An Equilibrium has been found (Status: " << this->LCPModel->get(GRB_IntAttr_Status) << ")"; } } else { LOG_S(INFO) << "Game::EPEC::computeNashEq: no equilibrium has been found."; int status = this->LCPModel->get(GRB_IntAttr_Status); if (status == GRB_TIME_LIMIT) this->Stats.Status.set(ZEROStatus::TimeLimit); else this->Stats.Status.set(ZEROStatus::NashEqNotFound); } return this->NashEquilibrium; } bool Game::EPEC::warmstart(const arma::vec &x) { ZEROAssert(x.size() >= this->getNumVar()); ZEROAssert(this->Finalized); ZEROAssert(this->PlayersQP.front() == nullptr); this->SolutionX = x; std::vector devns = std::vector(this->NumPlayers); std::vector prevDevns = std::vector(this->NumPlayers); this->makePlayersQPs(); arma::vec devn; if (this->Algorithm->isSolved()) LOG_S(WARNING) << "Game::EPEC::warmstart: " "The loaded solution is optimal."; else LOG_S(WARNING) << "Game::EPEC::warmstart: " "The loaded solution is NOT optimal. Trying to repair."; return true; } bool Game::EPEC::isPureStrategy(double tol) const { return this->Algorithm->isPureStrategy(tol); } bool Game::EPEC::isSolved(double tol) const { return this->Algorithm->isSolved(); } void Game::EPEC::findNashEq() { ZEROAssert(this->Finalized); if (this->Stats.Status.get() != ZEROStatus::Uninitialized) { LOG_S(ERROR) << "Game::EPEC::findNashEq: a Nash Eq was " "already found. Calling this findNashEq might lead to errors!"; } std::stringstream final_msg; switch (this->Stats.AlgorithmData.Algorithm.get()) { case Data::EPEC::Algorithms::InnerApproximation: { final_msg << "Inner approximation: run completed. "; this->Algorithm = std::shared_ptr( new class Algorithms::EPEC::InnerApproximation(this->Env, this)); this->Algorithm->solve(); } break; case Data::EPEC::Algorithms::CombinatorialPne: { final_msg << "CombinatorialPNE: run completed. "; this->Algorithm = std::shared_ptr( new class Algorithms::EPEC::CombinatorialPNE(this->Env, this)); this->Algorithm->solve(); } break; case Data::EPEC::Algorithms::OuterApproximation: { final_msg << "Cut-and-Play: run completed. "; this->Algorithm = std::shared_ptr( new class Algorithms::EPEC::CutAndPlay(this->Env, this)); this->Algorithm->solve(); } break; case Data::EPEC::Algorithms::FullEnumeration: { final_msg << "Full enumeration: run completed. "; this->Algorithm = std::shared_ptr( new class Algorithms::EPEC::FullEnumeration(this->Env, this)); this->Algorithm->solve(); } break; } const std::chrono::duration timeElapsed = std::chrono::high_resolution_clock::now() - this->InitTime; this->Stats.WallClockTime.set(timeElapsed.count() * std::chrono::milliseconds::period::num / std::chrono::milliseconds::period::den); // Handing EPECStatistics object to track performance of algorithm if (this->LCPModel) { this->Stats.NumVar = this->LCPModel->get(GRB_IntAttr_NumVars); this->Stats.NumConstraints = this->LCPModel->get(GRB_IntAttr_NumConstrs); this->Stats.NumNonZero = this->LCPModel->get(GRB_IntAttr_NumNZs); } // Assigning appropriate Status messages after solving switch (this->Stats.Status.get()) { case ZEROStatus::NashEqNotFound: final_msg << "No Nash equilibrium exists."; break; case ZEROStatus::NashEqFound: { final_msg << "Found a Nash equilibrium (" << (this->Stats.PureNashEquilibrium.get() == 0 ? "MNE" : "PNE") << ")."; } break; case ZEROStatus::TimeLimit: final_msg << "Nash equilibrium not found. The time limit was hit."; break; case ZEROStatus::Numerical: final_msg << "Nash equilibrium not found. The Numerical issues flag was triggered."; break; default: final_msg << "Nash equilibrium not found. Unknown status."; break; } LOG_S(INFO) << "Game::EPEC::findNashEq: " << final_msg.str(); } void Game::EPEC::setAlgorithm(Data::EPEC::Algorithms algorithm) { this->Stats.AlgorithmData.Algorithm.set(algorithm); } void Game::EPEC::setRecoverStrategy(Data::EPEC::RecoverStrategy strategy) { this->Stats.AlgorithmData.RecoverStrategy.set(strategy); } unsigned int Game::EPEC::getPositionLeadFoll(const unsigned int i, const unsigned int j) const { ZEROAssert(i < this->NumPlayers); const auto LeaderStart = this->TheNashGame->getPrimalLoc(i); return LeaderStart + j; } unsigned int Game::EPEC::getPositionLeadLead(const unsigned int i, const unsigned int j) const { ZEROAssert(i < this->NumPlayers); const auto LeaderStart = this->TheNashGame->getPrimalLoc(i); return LeaderStart + this->PlayersLCP.at(i)->getLStart() + j; } double Game::EPEC::getValLeadFoll(const unsigned int i, const unsigned int j) const { ZEROAssert(i < this->NumPlayers); ZEROAssert(this->LCPModel != nullptr); return this->LCPModel->getVarByName("x_" + std::to_string(this->getPositionLeadFoll(i, j))) .get(GRB_DoubleAttr_X); } std::vector Game::EPEC::mixedStrategyPoly(unsigned int i, double tol) const { ZEROAssert(i < this->NumPlayers); ZEROAssert(this->LCPModel != nullptr); return this->Algorithm->mixedStrategyPoly(i, tol); } double Game::EPEC::getValProbab(unsigned int i, unsigned int k) { ZEROAssert(i < this->NumPlayers); ZEROAssert(this->LCPModel != nullptr); return this->Algorithm->getValProbab(i, k); } double Game::EPEC::getValLeadFollPoly(const unsigned int i, const unsigned int j, const unsigned int k, const double tol) const { ZEROAssert(i < this->NumPlayers); ZEROAssert(this->LCPModel != nullptr); return this->Algorithm->getValLeadFollPoly(i, j, k, tol); } double Game::EPEC::getValLeadLeadPoly(const unsigned int i, const unsigned int j, const unsigned int k, const double tol) const { ZEROAssert(i < this->NumPlayers); ZEROAssert(this->LCPModel != nullptr); return this->Algorithm->getValLeadLeadPoly(i, j, k, tol); } double Game::EPEC::getValLeadLead(const unsigned int i, const unsigned int j) const { ZEROAssert(i < this->NumPlayers); ZEROAssert(this->LCPModel != nullptr); return this->LCPModel->getVarByName("x_" + std::to_string(this->getPositionLeadLead(i, j))) .get(GRB_DoubleAttr_X); } void Game::EPEC::setBranchingStrategy(Data::EPEC::BranchingStrategy strategy) { this->Stats.AlgorithmData.BranchingStrategy.set(strategy); } std::string std::to_string(const Data::EPEC::Algorithms al) { switch (al) { case Data::EPEC::Algorithms::FullEnumeration: return std::string("FullEnumeration"); case Data::EPEC::Algorithms::InnerApproximation: return std::string("InnerApproximation"); case Data::EPEC::Algorithms::CombinatorialPne: return std::string("CombinatorialPNE"); case Data::EPEC::Algorithms::OuterApproximation: return std::string("CutAndPlay"); } return ""; } std::string std::to_string(const Data::EPEC::RecoverStrategy strategy) { switch (strategy) { case Data::EPEC::RecoverStrategy::IncrementalEnumeration: return std::string("IncrementalEnumeration"); case Data::EPEC::RecoverStrategy::Combinatorial: return std::string("Combinatorial"); } return ""; } std::string std::to_string(const Data::EPEC::BranchingStrategy strategy) { switch (strategy) { case Data::EPEC::BranchingStrategy::HybridBranching: return std::string("HybridBranching"); case Data::EPEC::BranchingStrategy::DeviationBranching: return std::string("DeviationBranching"); } return ""; }